266 research outputs found

    Introducción a los sistemas de comunicaciones móviles globales por satélite

    Get PDF
    Peer Reviewe

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    A Network Service Provider Perspective on Network Slicing

    Get PDF
    This work has been performed in the framework of the H2020 project 5GTRANSFORMER (Grant Agreement no. 761536) and EUB project NECOS (Grant Agreement no. 777067), which are partly funded by the European Commission. This information reflects the consortia views, but neither the consortia nor the European Commission are liable for any use that may be done of the information contained therei

    On slice isolation options in the transport network and associated feasibility indicators

    Get PDF
    Proceedings of: IEEE 7th International Conference on Network Softwarization (NetSoft 2021)Isolation is one of the more relevant attributes associated to the idea of network slicing, introduced by 5G services. Through isolation it is expected that slices from different customers could gracefully coexist without interfering each other, in the sense that whatever misbehavior or unforeseen demand from one slice customer could not affect the communication service received by any other slice customer supported atop the same physical transport infrastructure. This paper surveys and compare different technical approaches that can be taken for providing distinct isolation levels in the transport network, as a major component of end-to-end network slices. Furthermore, a number of isolation feasibility indicators are defined and proposed. These indicators are based on the approaches referred before, as a mean of guiding orchestration decisions at the time of provisioning or reconfiguring the transport slices in the network.This work has been partly funded by the 5G-PPP projects 5G-DIVE (Grant Agreement no. 859881), 5GROWTH (G. A. no. 856709) and 5G-VINNI (G. A. no. 815279)

    Architecture for integrating vertical customer programmability control of network functions and connectivity in a slice-as-a-service schema

    Get PDF
    Network slicing will permit offering to vertical customers tailored end-to-end logical networks in an on-demand fashion, on top of a common telecom infrastructure, achieving a Slices-as-a-Service (SlaaS) business model. This is possible due to the progressive introduction of network softwarization techniques, such as programmability and virtualization, into existing operational networks, enabling dynamic and flexible provision of slices. Those vertical customers could require the control not only of the network functions composing the end-to-end service, but also of the connectivity among them, e.g., for influencing the paths for steering traffic among function instances. However, this can be problematic since decisions from one vertical customer can collide with decisions from others. One aspect not yet sufficiently investigated is how to permit vertical customers to jointly control the service functions and the underlay connectivity, in such a way that could operate the allocated slice as if it was actually a dedicated network entirely for them. This paper explores some architectural proposition in this respect illustrated with some potential use cases and it provides an example of the provision of SlaaS for a vertical customer.This work has been partly funded by the European Commission through the projects 5G-PPP H2020 5GROWTH (Grant Agreement No 856709), EU-TW 5G-DIVE (Grant Agreement No 859881) and by the Spanish AURORAS (RTI2018-099178-B-I00) project. This information reflects the consortia views, but neither the consortia nor the European Commission are liable for any use that may be done of the information contained therein

    Support for availability attributes in network slices in GANSO

    Get PDF
    Network slicing provides a way to define logically isolated networks over the same and shared physical infrastructure. This paper departs from previous work defining GST And Network Slice Operator (GANSO), a framework for automating the creation of network slices over SDN architectures, and proposes extensions to support the availability attribute as defined by the GSMA Generic Network Slice Template (GST). This new attribute is integrated and implemented within the GANSO framework, being validated through a set of experimental results.This work has been (partially) funded by H2020 EU/TW 5G-DIVE (Grant 859881) and H2020 5Growth (Grant 856709). It has been also funded by the Spanish State Research Agency (TRUE5G project, PID2019-108713RB-C52PID2019-108713RB-52/AEI/10.13039/501100011033

    Understanding QoS applicability in 5G transport networks

    Get PDF
    5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure and network slicing is seen as a suitable candidate for providing the necessary quality of service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. The goal of this article is hence to analyze the impact of different QoS policies in case of having multiple network slices carrying fixed and mobile traffic.This work has been partially funded by the EU H2020 5GTransformer Project (grant no. 761536) and the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant no. 761586)

    Software-defined mobility management: Architecture proposal and future directions

    Get PDF
    A common characteristic for all of the uses in 5G wireless networks is the ubiquity and the almost permanent connection to the mobile network to get access to external applications. This really imposes a challenge in the signaling procedures provided to get track of the user and to guarantee session continuity. The mobility management mechanisms will play a central role in the 5G networks because of the always-on connectivity demand. This article presents a software defined approach to mobility management procedures addressing the present challenges and proposing some future directions for a more efficient service provision and a better usage of the network resources. The feasibility of such a Software-Defined Mobility Management architecture is assessed in a specific test-bed

    Fog-enabled Scalable C-V2X Architecture for Distributed 5G and Beyond Applications

    Get PDF
    The Internet of Things (IoT) ecosystem, as fostered by fifth generation (5G) applications, demands a highly available network infrastructure. In particular, the internet of vehicles use cases, as a subset of the overall IoT environment, require a combination of high availability and low latency in big volumes support. This can be enabled by a network function virtualization architecture that is able to provide resources wherever and whenever needed, from the core to the edge up to the end user proximity, in accordance with the fog computing paradigm. In this article, we propose a fog-enabled cellular vehicle-to-everything architecture that provides resources at the core, the edge and the vehicle layers. The proposed architecture enables the connection of virtual machines, containers and unikernels that form an application-as-a-service function chain that can be deployed across the three layers. Furthermore, we provide lifecycle management mechanisms that can efficiently manage and orchestrate the underlying physical resources by leveraging live migration and scaling functionalities. Additionally, we design and implement a 5G platform to evaluate the basic functionalities of our proposed mechanisms in real-life scenarios. Finally, the experimental results demonstrate that our proposed scheme maximizes the accepted requests, without violating the applications’ service level agreement.This work has been supported in part by the research projects SPOTLIGHT (722788), AGAUR (2017-SGR-891), 5G-DIVE (859881), SPOT5G (TEC2017-87456-P), MonB5G (871780) and 5G-Routes (951867)
    • …
    corecore